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Abstract. For a system of one-dimensional fermions moving in a common effective potential 
V ( x ) ,  a method is described to find the most general kinetic energy functional E A  which 
satisfies the requirements that ( i )  is a sufficiently differentiable function of the density 
p and of its first n derivatives p ,  p ' ,  . . . p'"'; ( i i )  is non-negative for arbitrary density 
distributions 20; ( i i i )  obeys the differential virial theorem. The cases n = 0, I ,  2 have been 
worked out yielding the result that = C p 3  + A , p " / p  is the only solution compatible with 
these conditions, where K's 0 is an indetermined coefficient to the Thomas-Fermi term 
and A, = h 2 / 8 m  is the full Weizsacker coefficient. 

1. Introduction 

The usual approximations to the kinetic energy density functional &k of a fermion gas 
with density p have the form 

Ek=KP5'3+A(VP)2/P+. . . (1) 

in three dimensions and 

E k  = Kp3 + Xp"/p + . . . ( 2 )  

in one dimension where the two first terms only are given here. Here K ,  K', A, x are 
certain coefficients and p ' =  dp/dx. For A = 0 (x  = 0) and K = K T F  ( K '  = KTF) the well 
known Thomas-Fermi (TF) approximation in three (one) dimensions is obtained where 
we have put K T ~ = 3 ( 3 7 r ~ ) ~ ' ~ h ~ / l O m  [ I ]  and K T F =  h2rr2/6m 121. 

The gradient correction term of (1) was first introduced by von Weizsacker [3] with 
A = A w =  h 2 / 8 m .  A corresponding argument leads to the same value for 1. Later on 
several authors [4-61 Set up a more systematic procedure of expanding &k into a 
gradient series under the supposition that p is sufficiently slowly variable so that 
gradient terms can be regarded as small corrections to the leading TF term. It is found 
that the original value of A, as given by von Weizsacker should be diminished by a 
factor of 9. 

When the first two terms of (1) are taken into account, insertion of Hartree-Fock 
densities leads to a total kinetic energy which differs from the true H F  kinetic energy 
by less than 1% [7]; agreement becomes still better when the third term of (1) (not 
given here) is included, however, the fourth term yields an infinite result for atoms [8]. 
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When densities are calculated self-consistently from the Euler equation which arises 
from the minimisation of the total energy functional results for p, total energy and 
various other properties are far less favourable when the approximation (1) with 
A = AW/9 is used [9-111. This approximation has also been criticised on theoretical 
grounds and  it has been proposed to modify the coefficient K~~ rather than A,, see 
[ 10-161. 

Thus, in summary, the answers to the question how to choose the coefficients of 
the Thomas-Fermi and of the Weizsacker term are still controversial, although there 
is general agreement that approximations of the type (1) (or  (2)) are not capable of 
reproducing quantum oscillations, irrespective of the value of A [ 17, 181. 

As has been shown by Szasz et a1 [19] the two requirements on &k 

( i )  to depend on p and O p  only ( p ,  p’ in one dimension), 
( i i )  to satisfy the virial theorem, 

are compatible to Thomas-Fermi- Weizsacker functionals with still completely 
unspecified coefficients. Therefore, the virial theorem cannot help to fix the coefficients 
in expressions (1) and (2). 

There is, however, at least in one dimension, a ‘differential’ virial theorem derived 
independently and using different methods by Baltin [20] and March and Young [21] 
which connects exactly the kinetic energy density, the particle density and  the potential 
pointwise, contrary to the usual virial theorem which is an  integral relation. The 
‘differential’ virial theorem, from which the ordinary virial theorem follows by integra- 
tion over all x, states that, for one-dimensional fermions moving independently in an 
effective common potential V(x), 

h 2  
8m 

Ek(X) =-p”’(x) - iV’ (x)p(x)  

where the positive definite definition 

(3) 

has been used ( CLi real chosen wavefunctions, doubly occupied by a total of N fermions). 
It is the purpose of this work to investigate to what extent the coefficients of the 

gradient expansion (2) can be fixed provided &k is required to be non-negative for all 
trial densities p 3 0 and to satisfy equation (3 ) .  

After the next section where the general method is described, specific cases are 
worked out. In 0 3 it is supposed that E~ depends only on p or on p and p‘ ,  0 4 deals 
with the fairly cumbersome case that the second derivative of p is included, too, besides 
p, p ‘ .  Results are summarised and discussed in the last section. 

2. General method 

Suppose we approximate the functional by a function of the first n derivatives 

Ek =f(p,  p’ ,  p ” , .  . . 7 p ‘ ” ’ ) .  ( 5 )  

The first variation of the kinetic energy with respect to variations of the density is then 
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given by 
+x 

6T = S 5 f ( p ,  p’ ,  . . . , p ‘ ” ’ )  dx 
-U- 

a f  TX 

= J f: 7 6 p ‘ ” ’ d x  
--a^ y=oap 

6 T =  J + X  -x [ v = o  ( - l ) ’ < ( d f ) ] 6 p  dx ap‘” ’  dx 

where integration by parts has been used repeatedly, 
When the total energy 

E = T + U  

= 5-y ek d x +  5“ Vp dx 
- X  

is minimised under the constraint 

p d x = N  5-1 
the Euler equation is 

( 7 )  

S T / S p +  V = p  ( 9 )  

where the Lagrange multiplier p has the meaning of the chemical potential. Using 
(6) we obtain 

” = O  

When this equation is differentiated with respect to x, V’ can be eliminated from (3) 
yielding 

h2  
P ”’ 4m 

where &I, in (3) has been rewritten as 

The potential V (and, of course, the particle number N )  determines the density p. 
Therefore, for f given, equation (10) cannot be regarded as a differential equation (of 
order sl= max(2n + 1,3),  n = 0, 1,2, . . .) for p since V has been eliminated. Rather 
this equation has to be looked upon as a relation to be satisfied identically with respect 
to the variables p, p ’ ,  . . . p”’ occurring in it. In other words, equation (10) is a condition 
to be imposed on the dependence of f  upon the variables p, p ’ ,  , . , , p ‘ ” ’ .  Thus, for n 
chosen, we may expect information about the constants in equation (2).  

Let us examine the cases n =0,  1 and 2 in detail, i.e. E~ = f ( p ) ,  E~ = f (p ,  p ‘ )  and 
&k = f ( p ,  p’,  p “ ) .  
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3. Approximation that E~ be dependent on p and p' only 

3.1. Case & k  = f ( p )  

If ck = f ( p )  equation ( 1 0 )  is 

or 

Evidently, this equation cannot be satisfied for arbitrary p, p ' ,  p" and p'" since d2f/dp2 
and df/dp are not dependent on p"'. Thus the assumption that depends only on p 
leads to a contradiction. 

If the term with p"' were absent, we would obtain 

having the general solution 

with integration constants K' and c. Since from physical grounds we have to demand 
f(0) = 0 it would follow that 

which is just the TF term of ( 2 )  with unspecified coefficient. 

3.2. Case Ek = f ( p ,  p ' )  

When Ek =f(p,  p ' )  is inserted in (IO), one obtains 

which leads to 

p"' does not occur in JT thus the factor of p"' must vanish, i.e. 

a'f h 2  
apr2  - 4mp 

which is integrated immediately yielding 

where g ( p )  and h ( p )  are functions of p only yet to be determined. 
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Furthermore, since f does not contain p”, the coefficient of pp“’ must be zero, i.e. 

a’fflap’’ = 0. (18) 

Expression (170) satisfies this equation. 
Equating now the term linear in p” to zero we obtain from (16) 

When expression (17a) is inserted in (19) it follows that 

g ( P )  = 0 

so that 

h 2  PI2 

8 m  P 
f =--+ h(p) .  

We are left from equation (16) with 

From (21) we find that (22) leads to 

having the solution 

h(p)  = 2p’ 

(cf (13), (14) and (140)) with h(0) = O .  
Thus we finally end u p  with 

h2  P I 2  
Ek=;p3+-- 

8 m  P 

i.e. a kinetic energy density with indetermined coefficient of the TF term and with the 
original Weizsacker term. 

4. Inclusion of the second derivative of density in the functional 

In a further step let us assume E~ = f ( p ,  p ’ ,  p”) so that equation (10) becomes 

When the derivatives of aflap, aflap’ and aflap” with respect to x are performed, 
expressions of considerable length emerge, so we will not quote them. 

The left-hand side of equation (26) contains derivatives of p up  to the fifth. Among 
these p”’, p(4) and p‘” d o  not occur implicitly in f and in its partial derivatives, by 
supposition. Therefore we have to equate the coefficients of these highest-order 
derivatives and  of their powers (if any) to zero, according to the considerations of § 2. 
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The coefficient of is pa2 f /ap ” ’ ,  so 

a’flap“’ = o 

f ( P ,  P ‘ ,  P ” )  = a ( p ,  P ’ ) P ” + b ( P ,  P ’ )  

so that 

with a, b being functions yet unknown. 
Correspondingly, the fourth-order term yields 

However, this equation is already satisfied because of equation ( 2 7 ) .  
The third-order terms lead to 

where ( 2 7 )  has already been taken into account. Inserting ( 2 8 )  in ( 3 0 )  we obtain 

Consider now all terms of equation (26) which d o  not contain p‘“, p“’ and p “ ’ .  When 
equation ( 2 8 )  is used, it is possible to collect terms associated with P ” ~ ,  p” and without 
p”. Equating the coefficients of these powers to zero each we obtain respectively 

and 

Equation ( 3 2 )  may be discarded because it follows from equation ( 3 1 )  by partial 
differentiation with respect to p ’ .  When ( 3 1 )  is differentiated with respect to p we 
obtain an  equation by use of which we are able to eliminate a’b lapap’ ’  from ( 3 3 ) .  
Thus we find 

and differentiating this equation with respect to p‘  we can eliminate a2b /ap “  from ( 3 1 )  
whence we obtain 

aa da 
p-+ 2 p ‘ y  = 0. 

aP aP 

This simple homogeneous first-order partial differential equation for a ( p ,  p ’ )  can be 
solved immediately by the method of characteristics (see, e.g., [ 2 2 ] ) .  
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When the parameter of a characteristic is denoted by s and p = d p / d s  the charac- 
teristic equations are 

P = P  

p’  = 2p’ 

and 

C i = O  (37c)  

whence we find the characteristic curves 

P = P o  e’ ( 3 8 ~ )  

p‘  = pb e*’ (386)  

a = ao. ( 3 8 ~ )  

When the most general solution of (36)  is required, the integration constants po, pb 
and a, have to be regarded as arbitrary functions (being, however, different from a 
characteristic) of a parameter t so that equations (38a)- (38c)  constitute the parameter 
representation p (  t ,  s) ,  p’ (  t ,  s ) ,  a(  t ,  s) of an integral surface in three-dimensional 
( p ,  p ’ ,  a )  space. Elimination of s from (38a, b )  yields 

Thus t has to be looked upon as an arbitrary function of p ‘ / p * ,  t = q ( p ’ / p * ) ,  so that 
we finally find 

a = a d t )  = a o ( s ( p ’ / p 2 ) )  

or 

a b ,  P ’ )  = r ( P ‘ / P * )  (40)  

where r is again an arbitrary function. Equation (40) is the most general solution of (36) .  

U = p f / p 2 .  (41 1 

Using solution (40)  we are now able to determine b(p ,  p ’ )  from (35) .  Let 

It follows that 

or 

ab 

From this equation we obtain by integration with respect to p’  
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where p(p)  has not yet been determined. With the new integration variable w = u / p 2  
we find from (42) and (43) 

b(p,p‘)=2p3 1: w(x-- (wr(w)) )  d d w + p ( p )  
8m dw 

h 2  
8m 

-_ - p3u’-2p3( u 2 r ( u ) - 1 :  wr(w)dw)  + p ( p )  

b ( p , p f ) = ( g - 2 r ( $ ) ) $ + 2 p 3 R ( $ )  + p ( p )  

where we have put 

(44) 

(45) 

Let us now evaluate equation (34). When the derivatives of expressions (40) and (44) 
are inserted in (34), we are left, after some algebra, with 

which has the general solution 
p ( p )  = <p3+ c (47) 

(cf equations (13) and (14)) with integration constants K‘ and c. 

general solution of (26), namely 
Combining equations (28), (40), (44), and (47), we eventually obtain the most 

From the condition that &k 3 0 for arbitrary density distributions p ( x )  5 0 we conclude 
that 

r(p’/p2) = 0. (49) 
Otherwise &k could become negative for sufficiently negative p”. (49) implies, however, 
that R ( u ) = O  (see (45)) so we are left with 

h2  p’* 
E k  = I+’+-- 

8m P 
which is just the same expression as equation ( 2 5 ) .  The constant c, equation (48), 
vanishes because of the physical requirement that &k = 0 for p = 0. 

5. Conclusion 

In the preceding sections we have calculated the most general kinetic energy density 
functionals &k subject to the following constraints: 

( i )  &k is a function f of p and p ’ ,  p”,  . . . p ( n )  ( n  3 0, integer), 
( i i )  &k is non-negative for arbitrary trial densities p 30 ,  
(iii) &k satisfies the differential virial theorem, equation (3). 
The second and third conditions have to be obeyed exactly by the exact (unknown) 

kinetic energy density functional, whereas the first is a condition which seems to be a 
reasonable approximation. 
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On combining (i), (iii) and  the Euler equation (9a)  of the energy minimisation 
problem, we eliminate the potential and obtain for various n differential equations 
(10) not for p ( x ) ,  but for the unknown functions f(p, p' ,  . . . p ' " ' )  of the independent 
variables p, p ' ,  . . . p ' " ' .  

These differential equations have been solved exactly for the cases n = 0, 1 and  2, 
the results being as follows. 

( a )  n = 0. When only local dependence & k  = f ( p )  is admitted equation (12) can 
be solved only if the term -p'" is discarded. In this case, the solution is a TF term 

( b )  n = 1 .  The partial differential equation (16) which arises from (10) for the case 
- p3 with indetermined coefficient. 

E~ = f (p ,  p ' )  yields the solution 

with arbitrary TF term, but with the original full Weizsacker coefficient. 
(c )  n = 2. When still greater flexibility is admitted by letting & k  = f ( p ,  p ' ,  p" )  the 

corresponding partial differential equation (26) leads, by rather lengthy calculations, 
to the general solution (48) where, besides constants of integration, an arbitrary function 
r occurs. However, because of condition (ii), r has to be put to zero so that again we 
are left with the functional ( 2 5 ) ,  thus ruling out any dependence of 

In summary, when constraints (i)-(iii) are taken into account strictly, &k is 
necessarily given by ( 2 5 ) ,  at least for OS n S 2 .  

Of course, expression ( 2 5 )  cannot yet serve as functional for practical calculations 
since K' cannot be fixed by the above conditions. However, results of this work clearly 
indicate, from a new point of view, that consistent corrections to functionals of the 
type of equations ( 2 )  have to be applied to the coefficient of the TF term, not to the 
coefficient of the Weizsacker term. This result is in agreement with conclusions drawn 
by other authors [ 10-161. Using different arguments these workers leave A ,  unchanged, 
but let the TF coefficient K ( N )  depend on the particle number N such that 
lim N+cc K ( N )  = K ~ ~ .  

on p". 
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